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ABSTRACT 

Software Fault Tree Analysis (SFTA) is a technique used to analyze software for faults 

that could lead to hazardous conditions in systems which contain software components. 

Previous thesis works have developed three Ada-based, semi-automated software analysis 

tools, the Automated Code Translation Tool (ACTT) an Ada statement template generator, 

the Fault Tree Editor (FTE) a graphical fault tree editor, and the Fault Isolator (FI) an 

automated software fault tree isolator. These previous works did not apply their tools on a 

real system. Therefore, the question addressed by this thesis is "Do these tools actually 

work on a real-world software control system?" 

This thesis developed and implemented a sample Software System Analysis 

Methodology (SSAM) using these semi-automated software tools. The research applied 

this methodology to a real-world distributed control system written in Ada. The Missile 

Engagement Simulation Arena's (MESA) control software was developed by the Naval Air 

Warfare Center, Weapons Division, China Lake, CA. 

The SSAM was used to show that the analysis of the Sphere-HWCI control module's 

74,000 lines of code could be thoroughly analyzed in less than 100 man-hours. This 

practical, 740 lines-of-code per hour rate was a direct result of the incorporation of the 

semi-automated tools into the process. 
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I. INTRODUCTION 

Computers are part of everyday life. From the complex systems found in the Space 

Shuttle to the Fisher Price Alphabet computer two-year-old children play with in the home. 

This wide spectrum of computer usage is evidence that we have become a computer- 

technology-dependent society. As this dependency has increased, more and more safety 

critical systems have become automated. This automation, relying heavily upon software 

control systems, increases productivity and efficiency but also greatly increases the 

possibility of catastrophic consequences in the event of system failures. Safety critical 

systems are those that manage processes that can directly impact human lives and/or 

expensive equipment and property. System failures directly relate into serious and usually 

unacceptable human and property losses. The degree of these losses depend greatly on the 

type of system involved. To reduce these losses, it is imperative that control systems 

conform to a standardized evaluation to ensure its reliability, dependability and safety. The 

development of useful methods to detect, isolate and eliminate the causes of these high risk 

failures is crucial in demonstrating the reliability and dependability of current and future 

safety critical software control systems. 

Hardware failures and defects are well understood and documented. Through the 

history of the industrial age, the science of hardware failure analysis and its concepts, 

causes and effects have been exhaustively evaluated and quantified. The same cannot be 

said about the concepts, causes and effects of software induced failures. The need for 

standardized software safety analysis principles and techniques is undeniable. This thesis 

examines the requirement for and development of a practical and effective software safety 

analysis methodology for safety-critical software systems. 

A.   SOFTWARE SAFETY 

Safety has been defined as "freedom from those conditions that can cause death, 

injury, occupational illness, or damage to or loss of equipment or property [Ref. 1]." A 



definition for software safety can then be given as, "freedom from software-caused death, 

injury, damage to or loss of equipment or property [Ref. 2]." Mishap, hazard, accident and 

risk are related concepts to safety that must be defined to understand the requirement for 

software safety. A mishap is an unplanned event or series of events that result in death, 

injury, occupational illness, damage to or loss of equipment or property, or environmental 

harm. Hazard and accident are usually used interchangeably. A hazard refers to the state or 

states of a system that when combined with certain environmental conditions could lead to 

a mishap, where accident is defined as an unwanted and unexpected release of energy. Risk 

is defined as a function of the probability of a hazardous state occurring, the probability of 

the hazard leading to a mishap, and the perceived severity of the worst potential mishap that 

could result from the hazard [Ref. 1]. With these stated definitions, it is no surprise that 

software safety has become a major concern in today's safety critical control systems. 

Project managers cannot afford to take the risk of minimizing the importance of software 

safety in these critical systems. Though acceptable levels of software safety have been 

achieved, at current technology levels, no system can be guaranteed free from defects. With 

this inevitable human-induced limitation, software safety then involves ensuring that the 

system will execute within a given context without resulting in unacceptable risk. 

Methodologies have been developed to reduce risk to an acceptable level while increasing 

system safety. This is achieved by identifying potential hazards early in the development 

process and then establishing requirements and design features to eliminate or control these 

hazards [Ref. 1]. 

When discussing safety, the concept of reliability emerges. Though related, these two 

concepts are not the same. Reliability is defined as the probability that a system performs 

its assigned function under specified environmental conditions for a given period of time. 

Extended to software, the definition becomes the probability that a software system fulfils 

its assigned task in a given environment for a predefined number of input cases, assuming 

the input cases are free of errors [Ref. 3]. Therefore, it can be said that reliability 



requirements are concerned with making a system failure-free, where safety requirements 

are concerned with making it mishap-free [Ref. 1]. 

B.   SOFTWARE DEFECTS 

The American Heritage Dictionary defines defect as "an imperfection, failing or fault." 

As related to software, a standard definition of software defects can then be those faults, 

errors or failures contained in a software system [Ref. 4]. Understanding the nature and 

interrelationships of these defects is essential when conducting any type of software safety 

analysis. 

1.      Faults 

Faults are those defects in a component or design which ultimately are responsible for 

a failure. Some causes include design errors, electromagnetic interference, unanticipated 

inputs and system misuse [Ref. 5]. Faults exhibit different classifiable properties such as 

duration, nature and extent. The duration of a fault can be transient, intermittent or 

permanent. The nature of a fault is determined by its behavior in the system. It can either 

be logical, producing logical values, or indeterminate, having no logical equivalent. The 

extent of faults determines the level of the fault, either local or global. Faults originate in 

the system's environment or from the interaction between the system and a user (process). 

Faults usually have one of several effects [Ref. 4]: 

• Disappear with no perceptible effect 

• Remain in place with no perceptible effect 

• Lead to a sequence of additional faults that result in a failure in the system's 
operation (propagation to failure) 

• Lead to a sequence of additional faults with no perceptible effect on the system 
(undetected propagation) 

• Lead to a sequence of additional faults that have a perceptible effect on the system 
but do not result in a failure of the system's operation (detected propagation 
without failure) 



2. Errors 

The term error is sometimes interchanged with fault, however, there is a distinct 

difference. In the context of system states, an error is considered to be part of an erroneous 

state that constitutes a difference from a valid state. When a system is in an invalid state, 

an external state analysis of the system can determine the states that would need to be 

changed to make the internal state of the system valid. This internal state can be valid 

within itself but incompatible with its surrounding environment. This can occur when a 

design failure is introduced in a component or through the interaction of a component in a 

valid state with one in an invalid state. An undesirable effect is the propagation of errors 

through the system changing valid components to erroneous ones. This property tends to 

portray errors in a transitive nature, linking the presence of faults with the failure of the 

system [Ref. 6]. 

3. Failures 

Every system is designed according to some specification. This specification defines 

the required operations and functions that the system is to perform. When the behavior of 

the system first deviates from this required specification, a failure has occurred [Ref. 6]. 

This definition of failure assumes the given specification is free from "errors" which could 

eventually lead to a failure. This assumption is necessary to be able to derive a coherent, 

functional definition of a failure. The specification does not, however, provide any insight 

to what behavior can be expected in the event of failures. This can be a problem when trying 

to design software that detects and copes with failures. Classifying failure behavior uses a 

modeling method that qualifies the disruptive nature of the failures. This is useful when not 

all failures are of equal consequence. These classifications of failures are as follows: 

• Fail-Safe - Procedures that attempt to limit the amount of damage caused by a 
failure. No attempt is made to satisfy the functional specifications except where 
safety is concerned. 

• Fail-Operational - Provides for full system functionality in the presence and 
migration of faults. 

• Fail Soft - Provides continued system operation but at a degraded performance or 



reduced functionality level until the fault is removed or the run-time conditions 
change [Ref. 1]. 

Using these classes of failures, it is possible to augment existing reliability techniques 

that attempt to eliminate all failures with techniques that concentrate on the high-cost 

failures. This effort can then ensure that these particular failures do not occur or at least 

their probability is minimized. Figure 1 summarizes the interrelationship between faults, 

errors and failures. 

f            'S 
Fault 

I        J 
(        \ 

Error 

I         J 
(         \ 

Failure 

I         J 

Figure 1: Software Defect Relationships 

4.      Software Defect Examples 

It is a well-known fact that software by itself cannot directly injury, maim or cause 

destruction. However, it is the interaction of this software with hardware that can produce 

catastrophic events [Ref. 1]. Computers are increasingly used to monitor and control safety 

critical systems. Real-time software controls aircraft, shuts down nuclear power reactors in 

emergencies, keeps telephone networks running, and monitors hospital patients. The use of 

computers in such systems offers considerable benefits, but also poses serious risks to life 

and the environment. The following list of defective software-induced accidents and 

hazards is presented to expose some of these risks and to demonstrate the critical 

justification for complete and comprehensive software safety analysis methodologies. 

• Therac-25 Radiation Therapy Machine. A man was exposed to fatal radiation level 
treatments due to a software modification of the control software, resulting in one 
human death and the manufacturer going out of business [Ref. 7]. 



• A French meteorological satellite computer was supposed to issue a read 
instruction to some high-altitude weather balloons but instead ordered an 
"emergency self-destruct," resulting in 72 of 141 weather balloons destroyed [Ref. 
1]. 

• An air-to-air missile loaded on the wing of an F/A-18 jet fighter failed to separate 
from the launcher because a computer program signaled the missile retaining 
mechanism to close before the rocket had built up sufficient thrust to clear the 
missile from the wing. The aircraft went violently out of control resulting in loss 
of the aircraft [Ref. 1], 

C.   SOFTWARE ANALYSIS TECHNIQUES AND TOOLS 

Software safety analysis and verification is required by contractors of safety critical 

systems. At least three Department of Defense standards include related tasks; one general 

safety standard [MIL-STD-882C 1993] includes tasks for software hazard analysis and 

verification of software safety; an Air Force standard for missile weapon systems [MIL- 

STD-1574A 1979] requires a complete and integrated software safety analysis; and the U.S 

Navy has a standard for nuclear weapons systems [MIL-STD-SNS 1986] that requires 

software nuclear safety analysis [Ref. 1]. Currently, a major restructuring effort of all 

military standards is underway. The outcome of this is unsure. However, it is almost certain 

that the number of military standards will decrease, consolidating numerous current safety 

standards. 

Various software safety analysis techniques have been developed to aid in this required 

verification. A few of these techniques have been tested and used extensively, while others 

are still being developed. From these techniques have come standardized methods and 

procedures to achieve the required results. This procedural characteristic has led to the 

automation of some of these techniques. 

The explosion of safety-critical software systems has put an enormous burden upon 

software engineers and analysts to produce "failure free" systems. This requirement alone 

increases the complexity and work load required to produce such systems. Manual 

methods, even with large software teams, can no longer provide the required effort subject 

to ever decreasing time and budget constraints. Today's software engineers and analysts 



must use automated tools to help in the process. Early automated tools were very specific 

in their use and were met with skepticism due to their unreliable nature and poorly proven 

track records. As more time, effort and resources were dedicated to the development of 

these tools, the concept of Computer Aided Software Engineering (CASE) tools was born. 

Continuing efforts at prestigious software engineering institutions like the Software 

Engineering Institute (SEI) at Carnegie Mellon University have made great strides in 

developing standard methods for software safety analysis. Automation of the entire 

software development life cycle from requirements development through code generation 

and testing is an ongoing project. It is imperative to develop correct requirement and design 

specifications in order to eliminate the incorporation of faults and errors in to the given 

software system. This is especially important in safety-critical software modules where any 

defect could cause loss of life and/or material. The development of correctly-implemented 

automated requirement and design generation methods will allow the development of 

virtually fault free systems. However, this is far from being a reality. Current technology 

in dealing with natural language requirements precludes the development of a correct 

automated tool. Automated tools have been proven in the code and testing generation 

cycles and are used extensively today. The following manual and automated analysis 

techniques are introduced as background for use later in developing a useful analysis 

methodology [Ref. 8]. 

1.      Hazard Identification and Analysis 

Hazard analysis involves identifying and assessing the criticality level of hazards and 

risks involved in the system design. Hazard analysis is an ongoing evolution throughout the 

development life cycle of the system. The different stages of hazard analysis consist of 

preliminary (PHA), subsystem (SSHA), system (SHA) and operating/support (OSHA). 

These analysis are crucial in detecting and identifying safety critical hazards. Several 

techniques have been developed to perform these analyses such as Failure Modes and 

Effects Analysis (FMEA), Fault Tree Analysis (FTA), Petri Net Modelling, Statecharts, 



Event Tree Analysis (ETA), design reviews/walk-throughs, checklists and other hazard/ 

operability analysis methods. Some of these methods are described below. 

a.     Fault Tree Analysis 

This thesis concentrates on the Software Fault Tree Analysis (SFTA) 

methodology extensively. Chapter II is dedicated to FTA and SFTA; their purpose, 

concepts and structure. In this section, numerous automated tools developed at the Naval 

Postgraduate School (NPGS) under the direction of Doctor Timothy J. Shimeall will be 

introduced. These tools will be the core of the proposed software safety analysis 

methodology presented later. 

ACTT 

The Automated Code Translation Tool was developed by Captain Robert 

Ordonio, USA, and extended by LCDR William Reid, USN, using resources at the Naval 

Postgraduate School. ACTT translates Ada statements into template structures to be used 

in SFTA. The tool consists of four components. First, a lexical analyzer, which determines 

if the input consists of valid tokens. Next is a parser generator, which checks that the input 

uses valid Ada constructs. Next is a template generator, which transforms valid statements 

into templates representing possible events associated with the statement in a format 

suitable for SFTA. The last component is a file generator that creates a file that meets the 

specifications of a fault tree editor (FTE) file type [Ref. 9]. ACTT takes an Ada source code 

file as input and processes each Ada statement into its associated fault tree template, 

connecting them accordingly. The output is written as an FTE specified file for further 

analysis. 

FTE 

In general, fault tree editors are used to graphically display and modify fault 

trees. These editors allow software analysts to interactively manipulate the graphic 

representation of a fault tree by using an automated graphic editor. This usage significantly 

reduces the time required to draw and redraw the trees during analysis. 



The Fault Tree Editor (FTE) used in this thesis was written by Charles P. 

Lombardo, Computer Systems Programmer for the Computer Science Department at 

NPGS. The code was written in the "C" programming language using XView, an OPEN 

LOOK tool kit, for the XI1 Windowing System. This editor loads a user-defined fault tree 

file and graphically displays it using standard fault tree symbology. The input file must 

conform to the specifications of FTE. The output from ACTT meets this specification and 

allows FTE to graphically present its results. The FTE display can then be modified, printed 

and/or saved as a new file [Ref. 9]. 

FI 

When dealing with software fault trees, tremendously large numbers of nodes 

can be generated from relatively small source code programs. To aid the analyst in 

managing these enormous tree sizes, a fault isolator tool, Fault Isolator (FI), was designed 

and built. FI was written by Lieutenant Commander Russ Mason, USN, and incorporated 

an efficient graphical user interface using the Transportable Application Environment tool 

(TAE). FI processes existing FTE compatible files allowing the analyst to "prune" the 

original tree. This pruning process is accomplished by searching for the associated tree 

node that corresponds to a source code line of interest. FI searches the tree and returns 

results in three categories related to the source code line number, exact match, contains 

match and closest match. This allows the analyst to determine which node/sub-tree is of 

interest and which can be pruned away. FI lets the analyst save the new tree which can then 

be displayed in FTE. This pruning process decreases the analysts work load by ehminating 

tedious manual tree searches [Ref. 10]. 

b.    Failure Modes and Effects Analysis 

FMEA is an inductive technique that attempts to anticipate potential failures so 

that the source of those failures can be eliminated. FMEA consists of constructing a table 

based on the components of the system and the possible failure modes of each component. 

Though the exact implementation of the table can vary, the normal table consists of the 



following columns, component, failure mode, effect of failure, cause of failure, occurrence, 

severity, probability of detection, risk priority number and corrective action. A list of 

possible failure modes is generated for each component and inserted into the table. The 

remaining columns for each failure mode are then filled in using validated estimates and 

best guess judgements. This is strictly a manual analysis of the system that attempts to 

anticipate potential failures [Ref. 8]. 

c.     Petri Nets 

Petri Nets are a simple, elegant model for concurrent program analysis. The Petri 

Net model is a 5-tuple structured as (P,TJ,0,M). P is a finite set of places drawn as circles 

representing conditions. T is a finite set of transitions drawn as bars representing events. / 

and 0 are sets of input and output functions which map transitions to places and places to 

transitions, respectively. M is the set of initial markings (states) for the modeled net. 

Places may contain zero or more tokens drawn as black circles. A marking (or 

state) of the Petri Nets is the distribution of tokens at a moment in time. Tokens in Petri 

Nets model dynamic behavior of systems. Markings change during execution of the Petri 

Nets as the tokens "travel" through the net as in modelling the flow of information. The 

execution of the Petri Nets is controlled by the number and distribution of the tokens. A 

transition is enabled if each of its input places contains at least as many tokens as there 

exists arcs from that place to the transition. When a transition is enabled it may fire. When 

a transition fires, all enabling tokens are removed from its input places, and a token is 

deposited in each of its output places. 

Safety properties of Petri Nets can be analyzed without the need to necessarily 

generate the entire reachability graph. The idea is to work backwards from high-risk states 

to determine if these hazardous states are reachable, similar to FTA. This backward method 

uses the inverse Petri net (reversed input and output functions), and is practical only when 

a small number of unsafe states is considered. The idea is to work backwards from unsafe 

states to all critical states (i.e. states having at least two successors). When a critical state 
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is reached, interlocks can be used to force the system to take those paths that do not lead to 

unsafe states [Ref. 11]. 

d.    Statecharts Analysis 

In Statecharts, a normal state transition diagram is enhanced with hierarchical 

and compositional features. States can then be clustered into super-states with the 

possibility of "zooming in" and "zooming out" of states. In an AND decomposition, states 

are split into concurrent subcomponents that communicate via broadcasting. An OR 

decomposition decomposes a state into sub-states such that control resides in exactly one 

sub-state. When coupled with a standard graphics package, Statecharts enable viewing the 

description at different levels of detail. Statecharts can be used either as a stand-alone 

behavioral description or as part of a more general design methodology that deals with the 

system's other aspects, such as functional decomposition and data-flow specification [Ref. 

12]. 

e„     Others 

Nuclear Safety Cross Check Analysis (NSCCA). This methodology was 

developed to satisfy the USAF requirements for nuclear systems. This process has two 

main components one technical and one procedural. The technical evaluates the software 

by multiple analyses and test procedures to ensure that it satisfies the systems nuclear safety 

requirements. The procedural implements security and control measures to protect against 

sabotage, collusion, compromise, or alteration of critical software components, tools, and 

NSCCA results. The goal of the NSCCA method is to attempt to show, with a high degree 

of confidence, that the software will not contribute to a nuclear mishap [Ref. 1]. 

Software Common Mode Analysis (SCMA). This technique is derived from its 

hardware predecessor. In hardware common mode analysis, redundant, independent 

hardware components are used to provide fault tolerance. Research has shown that there is 

a potential for a single hardware failure to affect more than one redundant component 

through a software path [Ref. 13]. Software common mode analysis uses structured walk- 
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throughs to examine the potential for a single failure to propagate across hardware 

boundaries via a software path [Ref. 1]. 

Sneak Software Analysis. Another technique derived from its hardware 

counterpart. Here, the software is translated into circuit diagrams and analyzed to detect 

areas of unreachable code or unreferenced variables. This technique does not provide any 

great insight to software safety rather it provides more of a software reliability check and a 

poor one at that [Ref. 1]. 

D.    THESIS PROJECT APPLICATION 

1.      MESA Overview 

The Naval Air Warfare Center Weapons Division (NAWCWPNS), China Lake, 

California is developing a Missile Engagement Simulation Arena (MESA) in support of 

continued real-time weapons systems testing. MESA (Figure 2) is a military construction 

project that replaces its predecessor, the Encounter Simulation Laboratory (ESL) located in 

Corona, California. 
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Figure 2: Missile Engagement Simulation Arena (MESA) 
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MESA is an indoor research, development, test and evaluation facility with the 

capability to simulate the engagement of various missile fuzes with airborne targets. It 

provides an arena for the study and analysis of the electromagnetic interactions of the 

missile fuze sensors with targets during simulated engagements [Ref. 14]. 

2.      MESA System Overview 

The MESA system structure is comprised of different hardware configuration items 

(HWCI) and computer software configuration items (CSCI) (Figure 3). 
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Generation 
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Control 
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Control Line 
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Figure 3: MESA System Structure 

The main HWCFs consist of a Sensor Transport System (STS), two Overhead Target 

Support Systems (OTSS) and two calibration Sphere Systems. Each HWCI system is 

controlled by a remote computer with associated control software. The CSCI's consist of a 
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Control module, Fault Diagnostic module, Engagement Generation module, Data 

Acquisition module and a Quality Assurance module. The Control CSCI acts as the host 

coordinator for the MESA system. Each remote computer is capable of running in an open- 

loop and closed-loop mode, depending upon the current system state. The Control CSCI 

maintains communication with all the remote computers, sending and receiving data as 

required to accomplish the given test cases [Ref. 15]. 
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Figure 4: Calibration Sphere Hardware Diagram 
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E. PROBLEM STATEMENT 

Due to availability of MESA software, this thesis will only analyze the sphere control 

system module. MESA has two calibration spheres that are suspended overhead the arena. 

Each sphere has two control lines and two encoder lines. The control lines position the 

spheres in a vertical plane perpendicular to the data-collection direction. Movement up 

range and down range is not under software control and requires the hoists to be moved 

manually. The encoder lines are used to obtain stretch-independent measurements of the 

control lines' length. Each sphere has a sphere computer that is part of the distributed 

control system. Each sphere computer controls its associated control and encoder lines. 

Figure 4 depicts the physical layout of one of the calibration sphere systems. The sphere is 

suspended by control and encoder lines connected to individual stepper motors located 

within the structure of the arena. The stepper motors are controlled by the remote sphere 

computer which operates in both an open loop mode for sphere speed control and a closed 

loop mode for sphere position control. The operator moves the sphere into its required 

position through the use of the control module interface [Ref. 15]. 

This thesis addresses the questions, can larger scale software control systems be 

efficiently and effectively analyzed using new and existing automated and semi-automated 

software safety analysis methodologies? Specifically, can the automated tools ACTT, FTE 

and FI be used in combination with the standard software fault tree analysis technique to 

provide accurate and meaningful software safety analysis data on a real world, currently 

developing project? These questions will be answered by analyzing the MESA calibration 

sphere subsystem using the automated tools and methodologies developed at the Naval 

Postgraduate School. 

F. SUMMARY OF CHAPTERS 

1.    EL Fault Tree Analysis Process 

This chapter outlines the fundamentals of fault tree analysis and its extension into the 

software arena with software fault tree analysis. 
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2. DI. Software System Analysis Methodology 

This chapter outlines a sample software safety analysis methodology consisting of a 

combination of standard manual techniques and locally developed automated techniques. 

3. IV. Methodology Implementation Results 

This chapter describes the implementation and presents the results of the sample 

software safety analysis methodology on the MESA Sphere-HWCI control software. 

4. V. Conclusions 

This chapter presents author derived conclusions, recommendations and desired future 

work areas of research. 
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II. FAULT TREE ANALYSIS 

Fault tree analysis was developed at Bell Telephone Laboratories in 1962 by H.R. 

Watson. It was initially designed to be used for safety and reliability studies of the 

Minuteman missile system. Engineers at Boeing further developed and refined the 

procedures and became the method's foremost proponents as a method for performing 

safety analysis of complex electromechanical systems [Ref. 2]. A fault tree consists of fault 

events, branches and tree gates. Events are failure situations resulting from the logical 

interaction of primary failures or those failures of interest. Branches connect two events or 

a tree gate and an event. Gates are boolean logic symbols that relate the input to its output. 

A system is represented by a series of these components making a fault tree. 

Fault tree analysis starts with defining a particular undesirable event and then provides 

an approach for analyzing the causes of this event. It is important to choose this event 

carefully. If it is too general, the fault tree becomes large and unmanageable, likewise, if 

the event is too specific then the analysis may not provide a sufficiently broad enough view 

of the system. Fault tree analysis can be extremely time consuming and expensive. 

Therefore some method of choosing a set of desired hazardous events must be 

implemented. This can be accomplished through the preliminary hazards analysis 

previously discussed. Each top-level hazard event is then analyzed. 

Once the hazard has been chosen, it is used as the top event of a fault tree diagram. The 

system is them analyzed to determine all the likely ways in which that undesired hazard 

could occur. The fault tree is a graphical representation of the various combinations of 

hazards that lead to the undesired event. The faults may be caused by component failures, 

human failures or any other event that could lead to the undesired hazard, such as a random 

environment event. It should be noted that a fault tree is not a model of the system or even 

a model of the ways in which the system could fail. Rather it is a depiction of the logical 

interrelationships of basic events that may lead to a particular undesired event [Ref. 8]. 
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The two most common gates used in fault tree analysis are the AND gate and the OR 

gate. If one or more events are required to produce the output event then an AND gate 

connector is used. The AND gate connects two or more hazards. An output occurs if all of 

the input hazards occur (Figure 5). 

Figure 5: AND Gate 

If one or more events can produce the output event then an OR gate connector is used. 

An output hazard occurs from an OR gate if any of the input hazards occur (Figure 6). Other 

gates that are occasionally used in FTA are the exclusive OR, priority and the inhibit. These 

will not be covered here. 

Figure 6: OR Gate 
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This analysis process continues until all hazards in the tree are either defined or cannot 

be decomposed further. The culmination of a fault tree analysis is a depiction of the 

required hazard sequence that must happen for the top hazardous event to occur. If no such 

path exists, then it is shown that the top event cannot occur [Ref. 9]. 

A.   SOFTWARE FAULT TREE ANALYSIS 

Software fault tree analysis (SFTA) was developed in 1983 through three nearly- 

simultaneously independent efforts by Meintee [Ref. 16], Leveson and Harvey [Ref. 17] 

and Taylor [Ref. 18]. Their research applied proven FTA techniques to the analysis of 

software. The process paralleled standard FTA principles, starting with a top event and 

working backwards through the tree, generating a path that showed the necessary hardware 

as well as software events that had to occur. 

SFTA, like FTA, starts with a defined top event. This event is described through a 

hazard analysis and is usually a safety critical event. The process assumes that the system 

has failed according to the defined event and works backwards to determine the set of 

possible paths that allow the event to occur. This path is made up of further decomposed 

events connected by gates similar to those in FTA. Events are continually expanded until 

either they cannot be developed further due to lack of information or insufficient 

consequences or they no longer require analysis. Common software fault tree symbols and 

their associated meanings can be found in Appendix A. Once the tree has been fully 

expanded and analyzed, it can be shown that the program either allows or disallows the top 

event state to be reached. This information is then used to correct the program, if required, 

eliminating the undesired event's occurrence. Each event in the set of undesirable events is 

then analyzed in a similar fashion. It has been shown that for large systems, the use of 

partial SFTA can be effective in finding faults and in identifying critical modules that may 

need further analysis [Ref. 1]. 

An interesting note arises between the manner in which SFTA handles the 

quantification of event probabilities. Unlike hardware fault trees where each hazard/event 
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can be assigned a given probability of failure due to centuries of historical data, software 

failures are in and of themselves logical, not lending themselves to a level of probability. 

The software either works or it does not. This distinction between probabilistic hardware 

fault trees and logical software fault trees is important in understanding the complexity 

involved in trying to conduct a complete software analysis. 

In summary, SFTA can be used to determine software safety requirements, detect 

logic errors and identify multiple failure sequences involving different parts of the system 

that lead to hazardous events. 
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III. SOFTWARE SYSTEM ANALYSIS METHODOLOGY 

Most analysis methodologies incorporate different combinations of software 

analysis techniques depending upon the application, available tools and experience of the 

analyst. Combining techniques and knowing when and which ones to use is an important 

part of the over all system safety analysis process. Cha discusses a safety oriented design 

method whose goal is to minimize the amount of safety-critical code and to produce a 

design whose safety can be certified [Ref. 19]. His work asserts that hazard analysis of 

designs allows the safety analyst to modify the software design to prevent the occurrence 

of hazardous states during operation. It is important that a practical, standardized 

methodology be implemented when performing software safety analysis. This chapter 

outlines a methodology consisting of a combination of standard manual techniques and 

automated techniques that have been developed at the Naval Postgraduate School. This 

methodology will be partially implemented and demonstrated in the next chapter. 

A.        STEP 1: CONCEPT EXPLORATION AND SYSTEM RESEARCH 

The analyst must become intimately familiar with the system and its subsystems 

before any realistic analysis can be started. Interviews and discussions with design team 

personnel, project site visits, related system research and current system documentation 

reading are all possible sources of information. This research must be thorough and 

complete. Additionally, it must include any management proposed analysis constraints. 

These constraints should be included in the software development plan and cover analysis 

time lines, milestones and goals. By accomplishing this step the analyst gains a 

fundamental understanding of the entire system design and its relevant interfaces. Though 

the purpose of this step is not to make the software analyst into the system engineer, the 

time spent in this step will pay dividends throughout the entire analysis process. 
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B. STEP 2: HAZARD IDENTIFICATION 

There does not seem to be any one easy way to identify hazards within a given 

system. Hindsight is always 20/20. After a mishap occurs, an investigation usually reveals 

a set of causes and the engineers learn for the next time [Ref. 8]. However, in safety-critical 

systems, there may be no next time. With no "systematic" process in which to look for 

hazards, the use of domain experts and thorough research is proposed as a "best" 

alternative. If the concept exploration step above is performed correctly, a decent 

foundation will be available to venture into this identification process. A group of "experts" 

should be designated and chartered to perform this process. An important pre-requisite 

must be that the group understands the differences between the new system and previous 

systems, if any, so that they can understand the new failure modes introduced by the new 

system. Numerous group decision methods have been proposed. The Delphi Technique and 

"brainstorming" are offered here as a best combination usage. 

1.   Delphi Technique 

This method was created by the Rand corporation for the U.S. government and 

remained classified until the 1960's. The basic approach is to send out a questionnaire to 

all members of the group that enables them to express their opinions on the discussion 

topic. An appointed coordinator collects all the inputs, collates them and returns the 

summarized information to the members in an anonymous format. This process continues 

until a consensus is reached on the topic [Ref. 8]. 

Using this technique in hazards identification offers a wide range of advantages. 

With the dramatic increase of electronic mail, many more "experts" have become available 

for inclusion to software groups. The constraints of physical meetings would be eliminated 

and the process of collecting and distributing the results relatively painless. Group 

members could easily digest the required system research information and make sound 

judgements in a matter of days vice weeks. 
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2. Brainstorming 

This "technique" may seem more like common sense then a defined process. But in 

cases where resources are limited and/or the system is big enough to prevent obtaining an 

exhaustive hazards list, brainstorming can actually provide a plethora of hazards that 

otherwise would not have been identified. No meetings are required. Experts are solicited 

to list all possible hazards that they envision for the system. These lists are gathered by the 

analyst and processed into a formal systems hazards list. 

Through the combined use of the Delphi Technique and brainstorming in this step, 

the analyst is provided with an excellent set of potential high level system hazards to start 

the analysis process. 

3. Program Management Input 

Management plays a vital role in hazards identification. It must allow the Delphi 

group or the solicited experts time to produce the identified hazards, but not so much time 

that efforts are wasted. Some form of guidelines needs to be established. This could be in 

the form of a set of hazard analysis criteria or as simple as a time line. With the support of 

management and the use of good research and brainstorming techniques, a complete and 

useful set of hazards can be identified and readied for analysis. 

C.        STEP 3: PRELIMINARY HAZARD ANALYSIS 

This step actually begins the analysis section of the process, but as its name implies, 

it is the precursor to the formal hazards analysis and provides a framework from which the 

analyst can conduct a detailed analysis.The PHA must be executed using the most current 

resources available. Due to its currently tedious and manual execution, any delay or re- 

design causes frustration and lost work man hours. 

A thorough, methodical analysis of each available resource must be accomplished. 

By starting with the software development plan (SDP) and the software requirements 

specification (SRS), the analyst can isolate the areas that relate directly to the list of 

identified hazards. This will drastically reduce the task at hand. This initial cutting down of 
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requirements helps reduce the scale and complexity of the analysis. Depending upon the 

system being analyzed, other documents may need to be inspected. This list of documents 

should include at a minimum, those documents used in Step 1 during the Concept 

Exploration and System Research phase. 

Next, a table is constructed containing each of the identified requirements, its 

associated possible hazard, possible result if the hazard occurs and its severity level in 

terms of loss of life and property. An example is provided in Table 1. The idea here is to 

take the developed list of hazards from Step 2 and map them to their defining requirements 

found in the system documentation. A thorough mapping is important, however, an 

exhaustive one generates an unmanageable table. It is best that an ongoing dialogue 

between the analysts and the software developers be concurrent with the PHA to help 

reduce, combine and/or eliminate unnecessary mappings. By accomplishing this step the 

analyst narrows the scope of the analysis and begins to focus on the safety critical areas of 

the system. Additionally, the analyst gains a rough quantified understanding of the analysis 

problem and identifies the specific high severity component hazards of interest which will 

be used as initial starting input for the next step, Hazard Analysis. 

SDP Para 
Ref 

SDP Requirement Possible Hazard Possible Result Severity 

1.2.2 Control CSCI moves 
and positions the simu- 
lation hardware 

Erroneous control sig- 
nals are generated and 
sent to the system 
hardware 

Hardware/Personnel 
damage/injury 

High 

Table 1: Example PHA of MESA Software Development Plan 

D.        STEP 4: HAZARD ANALYSIS 

This step begins with the analyst determining which software modules are the most 

safety critical using the results of the PHA. This refined level of hazard identification at this 
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step allows the analyst to perform a combination inductive and deductive technique. This 

combined process first uses Failure Modes and Effects Analysis (FMEA) as an inductive 

technique to determine what hazardous states are possible. Once these states are defined, a 

specific hazard fault tree is developed. Then the deductive technique of SFTA is applied to 

determine how the specific hazard can occur. Here the proposed methodology diverges 

from the high level software system context and starts to concentrate on specific software 

configuration items. 

1.  Step 4.a: Failure Modes Effect Analysis 

As described in Chapter I, the implementation of FMEA is accomplished by 

manually constructing a table. Table 2 shows an example, building upon the PHA in Step 

3. Even by processing only identified safety-critical items, the table can become a rather 

large document. A directed effort to consolidate and combine similar items through group 

discussion will help keep this step manageable. 

Item Failure Mode 
Effect of 
Failure 

Cause of 
Failure 

Occur 
rence 

Severity 
Prob 

Detect 
Risk 

Corrective 
Action 

CSCI  - Host/remote Inadvertent Valid Host 5 9 5 225 Incorpo- 
control computers motion of signal sent to rate a loop 
signals out of synch 

(Closed vs. 
Open loops) 

hardware 
(ST,Sphere, 
OTSS) 

Remote in 
an invalid 
mode 
(Closed vs. 
Open loop) 

synchroni- 
zation 
algorithm. 

Table 2: Example FMEA of MESA Control CSCI 

By accomplishing this step the analyst more succinctly defines the safety-critical 

scope of the analysis and determines which areas need to be further analyzed. The output 

of the FMEA produces a set of top-level events that are then used as input for the next step, 

Specific Hazard Fault Tree Generation. 
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2. Step 4.b: Specific Hazard Fault Tree Generation 

At this point the analyst has accumulated a list of independent safety-critical events. 

These events are used to generate separate fault trees that identify the logical pathways 

from those events to their associated source code. The analyst makes each top-level event 

a root node in its specific hazard fault tree. The node is then decomposed into its required 

causes. This is continued until the final event leaf nodes succinctly define source code 

modules or areas. FTE is extremely useful in this step. With its graphic interface and 

immediate feedback, FTE provides the analyst with the generated fault tree quickly and 

effectively. The leaf nodes from this step become the input for the next step, SFTA. 

3. Step 4.c: Software Fault Tree Analysis 

In traditional methodologies, SFTA is carried out using manual methods. At most, 

a crude text and/or graphics editor would be used to assist the analyst in drawing and re- 

drawing the required fault trees with absolutely no computer-aided analysis. This paper's 

proposed methodology systematizes the standard SFTA technique by incorporating the use 

of locally-developed, automated, fault-tree tools. This automated fault-tree generation and 

manipulation process dramatically reduces analysis time and substantially reduces human 

induced errors. At this point, developed code is required for the following steps to be 

executed. 

a.  Step 4.C.1: ACTT 

The analyst takes the set of top-level events generated in Step 4.a and 

determines which of those events have had their Ada code developed. Those not yet coded 

should be noted and a list kept for other processing, either when the code becomes available 

or using a design-analysis technique. It is important that currently-uncoded critical modules 

not be passed over or forgotten. Source-code-line-number labels should be generated for 

all coded modules. Top-level events should then be paired with their corresponding code 

lines. This mapping is necessary when using FI in the following step. 
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Each coded module should then be ran through ACTT. This process is quick 

and generates a software fault tree in the FTE-specified format. The analyst should be 

prepared for a large number of output files as each module is processed. ACTT generates 

a separate fault tree file for the main procedure/package body, each task body and each 

defined exception statement. Separate working areas for each module helps in keeping the 

output organized. This is important as ACTT writes its output to identical file names that 

will over write any previously existing output from other processed modules. An example 

excerpt from an ACTT generated file is shown in Figure 7. For large numbers of modules, 

script or batch files can be written to execute this step in an even more efficient manner. 

After all necessary modules are processed, the output can then be manipulated and 

analyzed using the combination of Fault Isolator and Fault Tree Editor as described in the 

next step. 

431 
Sequence of statements causes Fault 
traffic.a 
45 48 0 0 1 2 2 

430 
Last statement causes Fault 
traffic.a 
45 48 0 85 1 0 1 

Figure 7: Example ACTT Output File 

It is interesting to note, that modules not fully coded can still be processed 

by ACTT. This "pre-processing" may prove useful in some cases where a more abstract 

fault tree could help to determine which detailed code structures would be less fault prone. 
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b.  Step 4.C.2: FTE/FI 

This step uses FI and FTE in combination to isolate and manipulate the fault 

tree generated in the Step 4.c.l. The analyst should launch both applications and position 

their work-space interfaces so that both are visible. The idea here is to use FTE to display 

the fault tree, determining which sub-tree and/or nodes need to be isolated for further 

processing based upon the source-code lines of interest. 

FTE is used to display the ACTT generated fault tree. The same fault tree is 

then opened for processing using FI. FI will display the total number of nodes and the tree's 

depth (root node is level zero). If the tree is of small to medium size, these tree statistics 

can be verified by moving the FTE display around, counting the exposed nodes. The Search 

for Nodes option in FI is then selected. Using the source-code-line-number created in Step 

4.C. 1 as input, FI returns three lists of matching nodes, Exact Match, Containing Match and 

Closest Match. From this, the analyst can determine which node, nodes or sub-trees that 

need to be eliminated. Once the sub-fault tree is isolated, it can be displayed in FTE for 

further isolation, to be printed or saved as a new fault tree file. Figure 8 shows FI's main 

menu and Figure 9 shows FTE's display of an example fault tree. 

IIFault Isolator Tool  - Main Menu;; 

Choose an Option 

♦■ Open a New File for Processing 

<& Conduct a Search for Nodes 

-0^ List Search Results 

^ Isolate a Specific Node (Create New FTE File) 

<0> Manipulate Fault Descriptions 

Exit Program 

Figure 8: Fault Isolator Tool Main Menu 
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JFauitTYiee Editor (FTE);; 

( Info) (Help) ( Print") ( Load ) ( Save ) (Quit 

431 

MEID 
Mode: NORMAL 

— —D 
Grid: OFF   Snap: OFF 

Figure 9: Fault Tree Editor Example Display 

The combined use of these two tools gives the analyst a powerful method to 

perform efficient and accurate manipulation and isolation of the fault tree. These isolated 

sub-fault trees depict the safety-critical-software hazards and their possible paths of 

occurrence. With these graphical depictions the software analyst can then move onto the 

next step of results analysis. 

4.  Step 4.d: Results Analysis 

The final analysis of the preceding automated and semi-automated steps is now 

performed. This analysis is still limited to manual methods supported by automated tools 
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and takes on an iterative process format. As design and code decisions are made from the 

generated sub-fault trees, repeated manipulations and re-generations of those trees will be 

required using FI and FTE. Each identified hazard should be processed through these steps. 

A bringing together of coupled modules is anticipated and will result in the need for the 

merging of various generated fault trees. The current functionality of FI and FTE does not 

allow this yet. Future implementation is being proposed. At this point the analysis 

methodology has reached a logical conclusion point. 

E. METHODOLOGY SUMMARY 

This proposed software system analysis methodology has tried to establish a direct, 

efficient and effective examination process using a combination of standard manual 

techniques and newly constructed automated tools. The methodology steps and knowledge 

gained are summarized in Table 3 below. An analysis of a portion of the MESA control 

system will be conducted implementing this methodology in the next chapter. 

Step Process Knowledge Gained 

1 Concept Exploration and System Research Overall system design 

2 Hazards Identification Potential high level 
•    Delphi Technique and Brainstorming system hazards 

3 Preliminary Hazard Analysis Specific component 
hazards of interest 

4 Hazards Analysis How given possible 
♦    4.a. Failure Modes Effects Analysis hazardous states can 

•    4.b. Specific Hazard Fault Tree Generation occur 

•    4.C. Software Fault Tree analysis 

•    4.C.I. Automated Code Translation Tool 

•    4.C.2. Fault Tree Editor/Fault Isolator Tools 

•    4.d. Results Analysis 

Table 3: Software System Analysis Methodology Summary 
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IV. METHODOLOGY IMPLEMENTATION RESULTS 

This chapter describes the implementation of the complete software safety analysis 

methodology. The MESA control system was selected for analysis due to its Ada 

programming language usage, distributed safety-critical control system structure and its 

apropos military application nature. Each methodology step outlines action taken and the 

corresponding results. This provides a concise discussion on the implementation and 

resulting usefulness of each step. 

A.        CONCEPT EXPLORATION AND SYSTEM RESEARCH 

Initial system research was conducted through a combination of manual and 

electronic means. Extensive use of the Internet allowed system design documentation to be 

updated and accessed in minimal time. Additionally, constructive conversations with the 

MESA system engineer and software development team were made easily through the use 

of electronic mail. These were important factors due to the over 300 miles between the 

MESA facility and the Naval Postgraduate School. A project site visit was conducted to 

China Lake, CA to tour the facilities and meet the MESA project personnel. The 

discussions held were extremely useful in providing system familiarity, identifying 

relevant hazards and projecting system implementation availability. 

Two primary documents were utilized to obtain the required system familiarity. 

These were the Software Development Plan (SDP) [Ref. 14] and the Software 

Requirements Specification (SRS) [Ref. 15]. These documents were critical to the 

understanding of the system, its design and the project's development plan. A thorough 

discussion on these documents combined with the project personnel meetings allowed 

sufficient details of the system interfaces to be collected and identified for use in 

determining possible system hazards. 
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B. HAZARD IDENTIFICATION 

The hazard identification step was implemented through the use of brainstorming 

sessions. The Delphi Technique was not implemented due to the academic nature of this 

analysis. Numerous face-to-face and electronic brainstorming sessions were held between 

different combinations of the author, the author's thesis advisor and various MESA project 

personnel. This provided a small group of experts to analyze the system and identify 

potential high-level, high-severity hazards. This led the group to entertain only those 

hazards dealing directly with loss of life and property/material damage. 

Each HWCI was analyzed and lists of possible hazards generated. The analysis 

was then artificially focused on the Sphere HWCI since it was the only HWCI at the time 

of the analysis with fully-functional Ada control code. Six high-level possible hazards were 

identified as listed below. 

•Sphere Impacts Arena Structure 

•Sphere Impacts Object Other Than Arena 

•Sphere Stops At Undesired Position 

•Sphere Encoder Lines Break 

•Sphere Control Lines Break 

•Inadvertent Sphere Line Movement 

C. PRELIMINARY HAZARD ANALYSIS 

The PHA step started with continued examination of the SDP and SRS. During this 

process, it was determined that four of the six high-level possible hazards were actually 

predecessors for the other two. This narrowed down the list to two specific hazards of 

interest. A detailed mapping of each of these specific hazards of interest to its associated 

defining-requirements in the SDP and SRS was made. Table 4 depicts the hazards, their 

defining requirements and possible result if the hazard occurs. 

Though the results look somewhat simplified, this step proved to be labor intensive 

and time consuming. The SDP and SRS contained over 150 pages of requirements, 

requiring 45 hours of manual reading and analysis. The PHA narrowed the scope of the 
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analysis, focusing on the specific hazards of interest within the Sphere HWCI. The other 

system HWCIs and CSCIs were also examined. As an example of a more involved PHA, 

Appendix B shows the PHA results on the MESA Control CSCI. To ensure the validity of 

SRSPara 
Ref SRS Requirement Possible Hazard Possible Result Severity 

3.2.2.3.2.5 Sphere Control shall 
control the sphere 
encoder and control 
line movements 

Sphere impacts arena 
structure 

Sphere/Personnel 
damage/injury 

High 

3.2.2.3.2.3 

3.2.2.3.2.4 

3.2.2.3.2.5 

ST Control shall con- 
trol the sensor trans- 
porter movements 

OTS Control shall con- 
trol main hoist line, 
control lines and 
encoder line move- 
ments 

Sphere Control shall 
control the sphere 
encoder and control 
line movements 

Sphere impacts object 
other than arena 

Sphere/ST/Target/ 
Personnel damage/ 
injury 

High 

Table 4: Results of PHA on MESA Sphere HWCI 

this analysis step, a review of the PHA was conducted by MESA project personnel during 

a scheduled site visit. This review proved extremely valuable by identifying and 

prioritizing specific system hazards. This step demonstrated that the PHA greatly reduced 

the number of possible hazards for each configuration item, narrowed the scope of the 

analysis to concentrate on the specific hazards of interest and enabled the analysis 

methodology to focus on the safety-critical areas of the Sphere HWCI. 

D.        HAZARDS ANALYSIS 

The hazard analysis began by looking strictly at the Sphere HWCI specific hazards 

of interest. A FMEA was performed followed by the "meat of the analysis" using SFTA. 
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1.   FMEA 

The Sphere HWCI FMEA produced the results depicted in Table 5. The individual 

FMEA items were derived from their safety-critical properties as related to the specific 

hazard of interest. This step provided a clear, concise listing of the specific top-level events 

necessary to develop the Specific Hazard Fault Trees. 

Item Failure Mode Effect of Failure Cause of Failure Corrective Action 

Sphere 
HWCI 
control 
signals 

Sphere con- 
trol software 
generates 
erroneous 
motion com- 
mand 

Undesired com- 
manded motion 
of Sphere 

• Data initialization failure 

• Undesired movement 
value generated 

• Invalid incremental 
movement calculation 

Incorporate soft- 
ware analysis 
checking to ensure 
valid motion com- 
mands generated 

Sphere 
hardware 

Sphere 
encoder/con- 
trol lines 
break 

Sphere motion 
causes impact 

• Hardware defective 

• Hardware limits 
exceeded 

Ensure hardware 
specifications satis- 
fied and routine 
hardware inspec- 
tions conducted 

Table 5: Results of FMEA on MESA Sphere HWCI 

2.   Specific Hazard Fault Tree Generation 

The Specific Hazard Fault Tree Generation step was implemented using the hazards 

analysis results from the previous two steps. The two top-level specific-hazard faults of the 

Sphere HWCI determined from the PHA were designated root nodes for their respective 

fault trees. Through the use of FTE, the tree generation process began. Each root hazard 

was piece-wise decomposed into to its subsequent fault-causes. This process was 

accomplished through the interactive discussions between the author and the author's 

thesis advisor. As each hazard's fault-causes were determined, corresponding nodes were 

added to the fault tree. Each "Cause of Failure" result generated in the FMEA was used to 

help build the tree. These fault-causes ended up being interior nodes of the tree and 

logically linked the specific-hazard root node with the user-generated, source-code level 

leaf nodes. 
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The first specific hazard fault tree was generated for the specific hazard sphere 

impacts arena (Figure 10). The top-level fault was decomposed into two independent 

faults, 1) sphere control line breaks OR 2) controlled motion of the sphere impacts the 

arena. These two faults are depicted at level one in Figure 10. The control-line-breaks fault 

impact 

H 
ctln brk control 

sw fail hw fail 

in it err value er track er 

augrer* 

Figure 10: Sphere Impacts Arena Specific Hazard Fault Tree 
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was not further analyzed since it dealt more with hardware failure issues than software. The 

controlled-motion fault was further decomposed using the FMEA failure causes as shown 

in Figure 10. Eventually five refined leaf nodes were generated. These leaf nodes succinctly 

defined specific Sphere HWCI source-code modules. 

This process was duplicated for the second specific hazard fault tree, Sphere 

impacts object other than arena (Figure 11). This tree generation effort paralleled that of 

impact 

obj mot cntrl brk control 

target 

sw fail hw fail 

init err value er track er 

Figure 11: Sphere Impacts Object Other Than Arena Specific Hazard Fault Tree 
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the first but included the additional first-level independent fault of object motion other than 

the sphere causes impact. From the system design, the only logical objects that could 

impact the sphere were the target, sensor transporter and the sensor. Each of these objects 

became level-two nodes and further decomposition was performed. 

The remainder of the tree in Figure 11 was identical to the first tree with the 

exception of the "init err" node which contained an additional fault level. This was due to 

the possible collision of other objects during sphere initialization. The resulting five leaf 

nodes were the same as the first tree. 

Due to the similarities of the two trees and the fact that the sphere impacting the 

arena seemed more consequential, only the sphere-impacts-arena tree was further analyzed. 

Each of the five leaf nodes in Figure 10 were then used to start the SFTA process in the next 

step. The use of FTE in this step was essential. Having the ability to graphically represent 

these top-level hazards in a real-time manner made the process of developing these trees 

painlessly effective. 

3.  Software Fault Tree Analysis 

The SFTA step began the exciting portion of the analysis. The five source-code- 

interface leaf nodes in Figure 10 were designated as individual, software-starting root 

nodes for their respective software fault trees. A mapping of these software-root nodes to 

their associated source code files was generated. This mapping was accomplished by using 

manual and semi-automated methods to search all source code files for relevance to the 

software-root node faults. This was extremely useful in reducing the amount of source code 

to be analyzed, however it was time consuming and a bit tedious. Table 6 shows the results 

of this mapping. 

SW Root Node Fault Source Code File 

Data Error Wrong initialization data provided 
to software 

Fault_monitor_s.a 
Remote_sphere.a 

Table 6: Software Root Node Mapping to Sphere Source Code Files 
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SW Root Node Fault Source Code File 

Check Error Initialization check fails to find Fault monitor s.a 
data incorrect Remote_sphere.a 

Algorithm Error Closed loop position algorithm Closed_loop_position_ 
generates bad values control.a 

Tracking Register Encoder line tracking not regis- Digital_input_s.a 
Error tered in software Digital_output_s. a 

Encoders_b.a 
Evaluate_s.a 
Fault_monitor_s.a 
Hw_reset.a 
Remote_sphere. a 

Encoder Line Breaks Encoder line break causes contin- Digital_output_s. a 
ued motion Encoders_b.a 

Evaluate_s.a 
Fault_monitor_s.a 

Table 6: Software Root Node Mapping to Sphere Source Code Files 

A second mapping was then generated to identify the specific source code 

procedures and functions that would fall under each software-root node. Once again, the 

identification of these procedures and functions was accomplished by searching each pre- 

mapped source code file for modules of relevance. This was an absolutely necessary step 

Source Code File Procedure of Interest SW Root Node 

Closed_loop_position_ 
control.a 

Calc_Within_Tolerance 
Calc_Errors 
Calc_Steps 
Steps_Or_Null 
Move_Steppers 
Spread_Of_Errors_During_Settle 
_And_Hold_Times 

Algorithm Error 

Digital_input_s. a Get_Control_Words Track Register Error 

Table 7: Sphere Source Code Procedures of Interest Mapping to Software Root Node 
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Source Code File Procedure of Interest SW Root Node 

Digital_output_s. a Encoders_Up Track Reg Error/ 
Encoders_Down Encoder Line Break 
Encoders_On 
Encoders Off 
UnFreezeJEncoder_Readings 
Freeze_Encoder_Readings 

Encodersjxa Get_Values Track Reg Error 

Evaluate_s.a Evaluate Track Reg Error/ 
Encoder Line Break 

Fault_monitor_s .a Initialize_Encoders_History Data Error/Check Error 

Check_For_Malfunction Track Register error 

Broken_Encoder_Line Encoder Line Breaks 

Hw_reset.a HW_Reset Track Register Error 

Remote_sphere_b- a Initialize 1 
Initialize2 
Initial_Engagement Conditions 
Go 

Data Error/Check Error 

Move_Encoder_Line Track Register Error 
Set_State 
Stop_Motion 
Stop_AU_Lines 

Table 7: Sphere Source Code Procedures of Interest Mapping to Software Root Node 

in the effort to construct each individual software fault tree. Each procedure, function and 

task body of interest would become itself a software sub-tree connected to its parent 

software-root node. Table 7 shows the results of this second mapping. 

a.  ACTT 

This step started with some initial work-area house-keeping. An electronic 

directory was generated for each software root node listed in Table 7. The mapped-source- 

code files for each node were then copied to that directory. Each source code file was run 
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through ACTT, capturing the execution using the Unix system script utility. ACTT quickly 

and efficiently generated tree templates for each file. Table 7 shows each source code file 

and the number of ACTT generated nodes in its set of templates. These extremely bushy 

Source Code File 
Number of Generated 

Nodes 

Closed_loop_position_control.a 1929 

Digital_input_s.a 86 

Digital_output_s. a 1074 

Encoders_b.a 447 

Evaluate_s.a 577 

Fault_monitor_s.a 1573 

Hw_reset.a 25 

Remote_sphere_b.a 2423 

Table 8: Number of ACTT Generated Fault Tree Nodes Per Source Code File 

trees were an expected result. ACTT separated each set of templates into three different 

areas, a main template, exception statement templates and task body templates. Only source 

code with exception and task body constructs generated the latter two template types. This 

execution method for ACTT allowed clean, concise processing of each required file. The 

outputs from this step, the ACTT generated templates and the Unix script session files, fed 

directly into the next phase of the analysis using the FI tool. 

b.  FI Pruning 

The next step in the analysis involved doing a first-pass pruning of 

irrelevant sub-trees from the generated templates, making them more manageable. FI and 

FTE were used effectively to achieve this. Each generated template was loaded into FI and 

FTE. FI accurately displayed the number of nodes and tree levels and FTE provided the 

graphical structure. By searching the Unix script files, individual source code lines of 

interest were identified and entered into FI for processing. The source code lines of interest 
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were chosen based upon the relevance to their associated initial fault statements listed in 

Table 6. FT accurately provided a listing of nodes in the tree relating to each source code 

line. New root nodes were selected and relevant sub-trees generated. Some of the trees were 

able to be pruned directly through FTE, though FT was still used to identify the correct 

nodes for pruning. This first-pruning process was extremely effective in reducing the sizes 

of all the fault sub-trees. This was found to be an extremely helpful step in that it allowed 

faster, more efficient processing of the sub-trees in the next step, Results Analysis. A 

comparison between the original and first-pruned sub-tree sizes is shown in Table   7. 

Software Root Node Original 
# of Nodes 

First-Pruned 
# of Nodes 

Check Error 647 409 

Data Error 649 411 

Algorithm Error 1756 1325 

Encoder Break 1150 548 

Tracking Register Error 1527 953 

Table 9: Comparison of Original vs. Pruned Software Root Node Fault Tree Size 

Appendix C contains the top-level fault trees fault descriptions and the software-root node 

fault trees generated in the analysis of the Sphere HWCI. A complete listing of each nodes 

associated fault statement is included as well. 

c.   Results Analysis 

At this point, the analysis process had provided a complete fault tree of the 

Sphere HWCI, starting from the identified specific hazard of interest, sphere impacts 

arena, in the top-level tree, to numerous source-code-statement-construct leaf nodes 

generated in the software-root node sub-trees. The fault tree contained over 5700 nodes and 

depicted all safety-critical possible fault paths. A complete results-analysis step would take 

this data and systematically analyze each possible path to determine which faults could and 

could not occur. This step in itself would be a challenging task to say the least. Due to time 
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limitations and the desire to demonstrate the remainder of this methodology, only one 

subset of fault paths was analyzed. The analyzed fault was that relating to the question, if 

an encoder line breaks, what happens? 

Sphere Impacts Arena 

I 
Computer control allows 

continued motion 

I 
Encoder line reader reads bad 

value 

I 
Encoder line fed at bad rate 

I 
Encoder line breaks 

Figure 12: Encoder Line Breaks Causal-Link Analysis Diagram 

To analyze this fault an abstract causal-link analysis diagram was 

constructed. Figure 12 shows the derived causal steps between the two physical events 

"Encoder line breaks" and "Sphere impacts arena." When the encoder line breaks, the 

Sphere-HWCI control system determines that an erroneous encoder line speed is present, 

processes that input and sends signals to stop all motion. The analysis looked at the possible 

logical paths that could occur to prevent the required stop signals from being sent, thus 
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allowing continued motion of the Sphere into the arena. Figure 13 depicts the software node 

srfcdr oft 

nw breaK"*] 

/feez\ 

bfk ecüir 

evaluate 

ecdr brk 

lanch 

calc err 

/or\ 

e/dr dow 

'Kar ON            , 
dr ofr       unfreeze 

Figure 13: Encoder Line Breaks Software Node Sub-Tree 

sub-tree that represents these logical paths. A calculation error in any one of the attached 

procedures-of-interest sub-trees could cause the "ecdr brk" node fault, encoder line break 

causes continued motion, to be true, thus leading to the Sphere impacting the arena. By 

using proof-by-contradiction, a systematic process was performed on each sub-tree 

determining if a calculation error would or would not lead to a true "ecdr brk" node fault. 

Irrelevant nodes and sub-trees were "diamonded out" through the use of FI and FTE. It was 

found that all procedure-of-interests could be diamonded out except for the "brk ecdr" and 
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"evaluate" sub-trees. Appendix C contains these two procedure-of-interest's final "pruned" 

sub-trees, showing all possible, logical fault paths leading to the "ecdr brk" fault node. 

Each of these fault-paths were then analyzed to determine which, if any, 

could occur. The fault tree depicting the calculation algorithm that determines if the stop 

motion procedure is executed (via setting a boolean value), is shown in Appendix C, Figure 

26. Starting at each leaf node, an examination of the associated source code showed that 

none of the fault-paths could occur. As each node and its code were analyzed, they were 

diamonded out as it was determined that the robust code structures and fault-tolerant 

procedure calls eliminated a possible fault path. Additionally, the incorporation of 

hardware fairleads on the encoder lines would prevent sphere motion beyond set safety 

distances. Thus, both a software and hardware failure would need to occur before a broken 

encoder line would lead to unintended motion. This concluded the analysis of the encoder 

line break fault showing that the actual source code that calls the stop motion procedure was 

fault-free and correct. 

E. EFFORT EXPENDED 

This analysis methodology required many man-hours of work and a fair amount of 

computer resources. Though many supporting members provided invaluable insight and 

guidance, the day-to-day analysis crunching was basically performed single-handedly by 

the author. Each methodology step demanded its own unique effort and resources. The 

actual amount of source code analyzed was in excess of 74,000 lines and required 100 man- 

hours to complete. 

The first phase of this methodology, Concept Exploration/System Research, 

Hazard Identification and Preliminary Hazard Analysis, involved a substantial amount of 

reading, examination and interpretation of numerous system resources with minimal 

computer support effort. Many man-hours were expended tracing system requirements for 

hazard identification and analysis. For example, the PHA on the Sphere-HWCI and 
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Control-CSCI alone required over 35 man-hours to complete. This phase was a manual 

process that required the most man-hours and will be the most challenging to automate. 

The second phase of this methodology, Specific Hazard Fault Tree Generation and 

Software Fault Tree Analysis with ACTT, FI and FTE, involved minimal amount of 

manual effort and a substantial amount of computer effort. The simultaneous use of ACTT, 

FI and FTE was critical in this analysis. The systematic, iterative process of generating fault 

templates with ACTT and alternating between viewing/reviewing the associated fault trees 

in FTE and pruning/re-generating those trees with FI required a thorough understanding of 

each tool, the methodology and the supporting computer hardware and software. With this 

knowledge, the actual effort expended in a typical analysis of one of the given software- 

node fault trees was on the order of hours. This time would be further reduced for those 

whose life is devoted to software analysis. However, without the use of these semi- 

automated tools and their integration into this methodology, even the most proficient 

software analyst would spend more time in accomplishing the same analysis. 

The third phase of this methodology, Results Analysis, involved a 50/50 split 

between manual and computer effort. As each individual software-node sub-tree was 

analyzed, an equal amount of time was spent looking through associated source code files. 

This phase produced the actual listing of possible faulty source code lines and was the 

culmination of the entire methodology process. 
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V. CONCLUSIONS 

A. CONCLUSIONS 

This thesis presented a sample methodology that demonstrated that Ada-based 

software control systems can be efficiently and effectively analyzed in a practical time 

frame through the use of existing automated and semi-automated software safety tools and 

methods. The semi-automated tools ACTT, FTE and FI were used in combination with 

standard software fault tree analysis techniques to provide accurate and meaningful 

software safety analysis data on a real world, currently developing software project. 

Through this methodology implementation, it was found that numerous "manual" holes 

existed in the current analysis process. Specifically, the need for an "expert systems" 

approach to executing the system design research step, hazards identification step and the 

preliminary hazard analysis step was identified. Current levels of "expert systems" 

technology makes this a steep task to fill. This coupled with the "industry-expected" need 

for a human safety analyst, shows a trend towards development of automated tools to assist, 

not replace, the analyst. Nevertheless, any effort towards development of a fully automated 

process will require substantial resources be directed towards the improvement of these 

analysis tools and expert systems. 

B. RECOMMENDATIONS AND FUTURE WORK 

Software analysis of safety-critical control-systems is an ongoing, evolutionary 

process. As more control systems are developed, more methods to analyze and process 

them will be developed. It is essential to disseminate, throughout the software analysis 

community, the lessons learned from those developmental processes to help promote future 

methodology development. The methodology presented here is dependent upon the use of 

the semi-automated tools, ACTT, FTE and FT. These tools and the developed methods to 

use them should be made available for further research and development. 
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These tools have demonstrated their usefulness in providing efficient software 

safety analysis capabilities. ACTT provides excellent software analysis data but could be 

improved upon as follows. First, a graphical user interface front-end will eventually 

become essential for wide spread use. Second, additional ACTT generated data output files 

would be useful such as a data session file and a generated node summary file. The FI tool 

gives the analyst a unique capability to manipulate and isolate fault trees. FI could be 

improved upon by adding additional functionality such as a Delete Sub-Tree and a Move 

Child/Sibling option. FTE could be improved by adding a zoom in/zoom out option, a 

thumbnail tree viewing option, an increased viewing window size and some sort of "pretty- 

tree" printing capability. A logical extension of these tools could be the combining of all 

three into one "Software Safety Analysis Tool Suite." This would provide the best utility 

of all and give the analyst one complete tool package. 

Continuing research and development of semi-automated and automated software 

analysis tools is essential in achieving a useful, standardized software analysis 

methodology. Though achieving a completely automated process in the near term seems 

unlikely to this author, continued work in each area of safety analysis will produce the 

stepping stones towards that desirable goal. 
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APPENDIX A. SOFTWARE FAULT TREE SYMBOLOGY 

RECTANGLE 
(Decomposable Event) 

DIAMOND 
(Non-decomposed Event) 

TRIANGLE 
(Link to Other Tree) 

ELLIPSE 
(System State Permitting a Fault) 

CIRCLE 
(Elementary Event) 

HOUSE 
(Normally Occurring System Event) 

AND GATE OR GATE 

Figure 14: Software Fault Tree Symbols 
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APPENDIX B. MESA CONTROL CSCI PHA RESULTS 

MESA Software Development Plan 

SDP 
Para Ref 

SDP Requirement Possible Hazard Possible Result Severity 

1.2.2 Control CSCI 
moves and posi- 
tions the simula- 
tion hardware 

Erroneous control 
signals are gener- 
ated and sent to the 
system hardware 

Hardware/Personnel 
damage/injury 

High 

1.2.2 Control CSCI pro- 
vides operator 
interface to control 
progress of simula- 
tion 

Operator directs 
unsafe or incorrect 
inputs to Control 
CSCI 

Hardware/Personnel 
damage/injury 

High 

1.2.2 Control CSCI logs 
operations for 
future reference 

Control develops 
erroneous log 
entries 

Log analysis generates 
future hazardous pro- 
cedures/actions 

High 

3.3 Operator has com- 
plete override capa- 
bility over Control 
CSCI 

Operator errone- 
ously overrides 
Control CSCI 

Hardware/Personnel 
damage/injury 

High 

3.3 Operator must 
determine the track 
in the measure- 
ment zone is free of 
obstructions 

Operator misjudges 
obstructions in free 
zone 

Hardware/Personnel 
damage/injury 

High 

3.3 GUI provides audi- 
ble and visual 
warnings to opera- 
tor on impending 
danger 

GUI warning sig- 
nals fail 

Hardware/Personnel 
damage/injury 

High 

3.3 All critical data 
transmissions use 
checksums 

Checksums errone- 
ously calculated 

Erroneous control sig- 
nals generated - system 
failure, Hardware/Per- 
sonnel damage/injury 

Low to 
High 

Table 10: PHA on Software Development Plan 
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MESA Software Requirements Specification 

SRS 
Para Ref 

SRS Requirement Possible Hazard Possible Result Severity 

3.1.1 Control CSCI shall Engagement gener- Erroneous data collec- Med 
provide for the ation computer tion, undesired engage- to 
input of data files maintains incorrect ment parameters High 
from Engagement data files resulting in hardware 
Generation damage 

3.1.2 Control CSCI shall DAC maintains Damage to sensor, High 
pass series and run incorrect parameters erroneous data collec- 
parameters to DAC tion 

3.2 Control CSCI shall Hardware devices Damage to hardware, High 
send Start Motion, continue to operate/ loss of data 
Stop Motion, Emer- remain still against 
gency Stop Motion operator's request 
commands within 
given time limits 

3.2.2.a.2 Control shall Inconsistent and/or Erroneous data collec- High 
-4 update informa- erroneous data tion, hardware devices 

tion, the State Table maintained in Sys- incorrectly maneu- 
and the system sta- tem. vered resulting in dam- 
tus/positions at the age. 
System Update 
Rate 

3.2.2.3.a Control CSCI shall HWCI computers Damage to hardware, High 
download execut- fail to execute loss of data 
able software to required program 
the ST, OTS, and 
Sphere Computers 
when they power 
up 

3.2.2.3.b Control CSCI shall Erroneous run Unanticipated hard- High 
increment the run parameters loaded ware motion and dam- 
number after each age, erroneous data 
engagement collected 

Table 11: PHA on Software Requirements Specification 
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SRS 
Para Ref SRS Requirement Possible Hazard Possible Result Severity 

3.2.2.3.C Given a GO signal Failure to start Damage to hardware High 
from operator, Con- motion of devices could result from colli- 
trol shall start could lead to a colli- sion, erroneous data 
motion of all sion situation. collected 
related devices not 
already in motion 
and reset the retry 
counter and the 
motion-fault timer 
for those devices 

3.2.2.3.d Given a STOP sig- Failure to stop Damage to hardware High 
nal from operator, motion of devices could result from colli- 
Control shall stop could lead to a colli- sion, erroneous data 
motion of all sion situation. collected. 
related devices 

3.2.2.3.1 Control shall reject IRS interface IRS interface incom- High 
.l.h sensor beam run 

mode and Colli- 
sion Risk combina- 
tions that are 
checked in the 
given table. 

incompatibility patibility 

3.2.2.3.1 Control shall not OTS control line OTS control line fail- High 
.3.a permit a move that tension limit ure, erratic OTS 

exceeds the control exceeded motion, hardware col- 
line tension limits lision and damage 
for the specified 
Target and Sphere 
control line in auto- 
matic mode. 

3.2.2.3.1 Control shall calcu- Erroneous danger Target and ST colli- High 
,3.d late Target danger 

zone 
zone calculated sion/damage 

3.2.2.3.1 Control shall calcu- Erroneous danger Target and ST colli- High 
.3.1.a.l late the ST danger 

zone 
zone calculated sion/damage 

Table 11: PHA on Software Requirements Specification 

53 



SRS 
Para Ref 

SRS Requirement Possible Hazard Possible Result Severity 

3.2.2.3.1 Control shall pre- Target and ST dan- Target and ST colli- High 
.3.1.a.2 vent Target danger 

zone from inter- 
secting with ST 
danger zone in 
Automatic mode 

ger zones overlap sion/damage 

3.2.2.3.1 Control shall calcu- Erroneous Collision or near miss High 
Al.e late the "Check Collision_Risk cal- of ST and Target, hard- 

Collision" point culated ware damage 

3.2.2.3.1 When operator Erroneous data cal- Collision of ST and High 
AA.b.l clicks forward run culated/passed to Target, hardware dam- 

(non-collision), HWCFs age 
Control shall exe- 
cute operations for Parameters out of Collision of ST and/or 
a forward run: limits condition Target with MESA 
l)Move ST to start position ST in target facility structure 
point 2)Calculate danger zone 
ST motion profiles 
3)Send run parame- 
ters to DAC ^Pro- 
gram SPG 5)Start 
ST motion 6)Send 
idle to DAC when 
ST stops 

Table 11: PHA on Software Requirements Specification 

54 



SRS 
Para Ref SRS Requirement Possible Hazard Possible Result Severity 

3.2.2.3.1 When operator Erroneous data cal- Collision of ST and High 
AA.b.2 clicks reverse run culated/passed to Target, hardware dam- 

(non-collision), HWCFs age 
Control shall exe- Collision of ST and/or 
cute operations for Parameters out of Target with MESA 
a reverse run: limits condition facility structure 
l)Move ST to start position ST in target 
point 2)Calculate danger zone 
ST motion profiles 
3)Send run parame- 
ters to DAC ^Pro- 
gram SPG 5)Start 
ST motion 6)Send 
idle to DAC when 
ST stops 

3.2.2.3.1 When operator Erroneous data cal- Collision of ST and High 
.4.4.b.3 clicks reverse run culated/passed to Target, hardware dam- 

(collision), Control HWCFs age 
shall execute opera- Collision of ST and/or 
tions for a reverse Parameters out of Target with MESA 
run (collision): limits condition facility structure 
l)Determine position ST in target 
AtoD_Start 2)Cal- danger zone 
culate ST motion 
profiles 3)Send run 
parameters to DAC 
4)Program SPG 
5)Wait 100ms 
6)Start ST motion 
7)SendidletoDAC 
when ST stops 

Table 11: PHA on Software Requirements Specification 
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SRS 
Para Ref SRS Requirement Possible Hazard Possible Result Severity 

3.2.2.3.1 Control shall per- Erroneous Run- Erroneous run-time High 
.4.4.C.3 form the following 

operations at the 
end of a data run: 

time Log entry 

Erroneous next step 

reports, unneeded pro- 
cedural changes made 

l)Provide operator set: Next engage- Collision of ST and 
a list to choose ment vice Next tra- Target, hardware dam- 
Observed Condi- jectory and vice age on next run 
tions 2)For out-of- versa. 
tolerance (OOT) 
conditions, accept 
run sets Set 
Engagement 3)For 
no OOT, set Run 
time Log, trajectory 
and engagement 
info. 

3.2.2.3.1 Control shall Erroneous Engage- Induces operator error High 
.4.5 retrieve Next 

Engagement 
ment retrieved causing collision of ST 

and/or Target with 
MESA facility struc- 
ture 

3.2.2.3.1 When Next Trajec- Erroneous next tra- Collision of ST and High 
.4.7 tory selected, Con- jectory conditions Target with MESA 

trol shall get next retrieved facility structure, hard- 
trajectory, display ware damage on next 
engagement condi- run 
tions, set engage- 
ment option. 

3.2.2.3.1 Control shall gener- Failure to generate Collision of ST and High 
.4.8.a.l ate warning mes- warning message, Target with MESA 

sage for invalid erroneous trajec- facility structure, hard- 
next trajectory. tory conditions used ware damage on next 

run 

Table 11: PHA on Software Requirements Specification 
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SRS 
Para Ref SRS Requirement Possible Hazard Possible Result Severity 

3.2.2.3.1 Control shall pass Erroneous read of Collision of ST and High 
.4.8.a.2 trajectory number engagement param- Target with MESA 

and engagement eters from engage- facility structure, hard- 
parameters to GUI. ment file ware damage on next 

run 

3.2.2.3.2 When EMER Stop motion com- Collision of ST and High 
.La STOP pressed, mands erroneously Target with MESA 

Control shall or not at all gener- facility structure, hard- 
l)Stop all motion ated ware damage on next 
2)Generate fault run 
log 3)Request and 
enter operator com- Personnel injury 
ment 

3.2.2.3.2 When ABORT Stop motion com- Collision of ST and High 
.Lb pressed, Control mands to ST errone- Target with MESA 

shall l)Stop ST ously or not at all facility structure, hard- 
2)Request and enter generated ware damage on next 
operator comment run 

3.2.2.3.2 When Hardware Stop motion com- Collision of ST and High 
.l.c EMER STOP mands to ST errone- Target with MESA 

pressed, Control ously or not at all facility structure, hard- 
shall l)Stop all generated ware damage on next 
devices 2)Generate run 
fault log 3)Request 
and enter operator Personnel injury 
comment 

3.2.2.3.2 Control shall stop Stop motion com- Collision of ST and High 
.2.b device motion mands to ST errone- Target with MESA 

when software limit ously or not at all facility structure, hard- 
exceeded. generated ware damage on next 

run 

Personnel injury 
  

Table 11: PHA on Software Requirements Specification 
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SRS 
Para Ref 

SRS Requirement Possible Hazard Possible Result Severity 

3.2.2.3.2 
.2.c 

Control shall not 
command ST to 
speeds in excess of 
ST speed zones. 

Erroneous speed 
commands gener- 
ated 

Collision of ST and 
Target with MESA 
facility structure, hard- 
ware damage on next 
run 

High 

3.2.2.3.2 
.2.d 

When main hoist 
software limit 
detected, Control 
shall l)Stop all 
devices in motion 
2)Generate fault 
log 3)Request and 
enter operator com- 
ment 

Stop motion com- 
mands to devices 
erroneously or not 
at all generated 

Collision of ST and 
Target with MESA 
facility structure, hard- 
ware damage on next 
run 

High 

Table 11: PHA on Software Requirements Specification 
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APPENDIX C. GENERATED FAULT TREES AND FAULT 
DESCRIPTION LISTINGS 

1. Top-Level Specific Hazard Faults 

A. Sphere Impacts Arena 

B. Sphere Impacts Object Other Than Arena 

2. Software Starting Root Node Faults 

A. Data error 

B. Check Error 

C. Algorithm Error 

D. Encoder Line Breaks 

E. Tracking Error in Software 

3. Encoder Line Breaks Analysis Faults 

A. Evaluate Node Sub-Tree Faults 

• Level One (Root to 264) 

• Level Two (264 to 86) 

• Level Three (86 to Leaves) 

B. Brk Ecdr Node Sub-Tree Faults 

• Root 

• Node 194 

• Node 179 

• Node 46 

Table 12 

Table 13 

Figure 15/Table 14 

Figure 16/Table 15 

Figure 17/Table 16 

Figure 18/Table 17 

Figure 19/Table 18 

Figure 20/Table 19 

Figure 21/Table 20 

Figure 22/Table 21 

Figure 23/Table 22 

Figure 24/Table 23 

Figure 25/Table 24 

Figure 26/Table 25 
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Node Label Fault Description 

impact Sphere impacts arena 

ctln brk Control line breaks 

control Control causes sphere impact 

wall near Sphere is close to arena structure 

motion Controlled motion causes sphere impact 

swfail Software commands motion causing sphere impact 

init err Initial position set in software causes erroneous motion 

check er Initialization check fails to find data incorrect 

data err Wrong initialization data provided to software 

value er Undesired movement value generated 

algrerr Closed loop position algorithm generates bad values 

track er Invalid incremental movement calculation 

tr reg er Encoder line tracking not registered in software 

ecdr brk Encoder line break causes continued motion 

hw fail Hardware Failure produces motion causing sphere impact 

Table 12: Sphere Impacts Arena Fault Description Listing 

60 



Node Label Fault Description 

impact Sphere impacts arena 

cntrl brk Control line breaks 

control Control causes sphere impact 

near obj Sphere is close to arena structure 

motion Controlled motion causes sphere impact 

swfail Software commands motion causing sphere impact 

initerr Initial position set in software causes erroneous motion 

man hook Manual positioning causes erroneous motion 

swerr Initial position set in software causes erroneous motion 

data err Wrong initialization data provided to software 

check er Initialization data fails to find data incorrect 

value er Undesired movement value generated 

algr en- Closed loop position algorithm generates bad values 

track er Invalid incremental movement calculation 

tr reg er Encoder line tracking not registered in software 

ecdr brk Encoder line break causes continued motion 

hwfail Hardware Failure produces motion causing sphere impact 

obj mot Object motion other than sphere causes impact 

target Target motion causes impact 

St Sensor transport motion causes impact 

sensor Actual sensor motion causes impact 

other Other object motion causes impact 

Table 13: Sphere Impacts Object Other Than Arena Fault Description Listing 
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data err 

Figure 15: Data Error Fault Tree 

Figure 16: Check Error Fault Tree 
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Node Label Fault Description 

data err Wrong initialization data provided to software 

oper err Operator manually inputs erroneous initialization data 

sw error Software generates erroneous initialization data 

init_ecdr Initialize_Encoders_History procedure in Remote_sphere.a 
causes fault 

initl Initialized procedure in Remote_sphere.a causes fault 

init2 Initialize_2 procedure in Remote_sphere.a causes fault 

init_eng Initial_Engagement_Conditions procedure in 
Remote_sphere.a causes fault 

go Go procedure in Remote_sphere.a causes fault 

Table 14: Data Error Fault Description Listing 

Node Label Fault Description 

check er Initialization check fails to find data incorrect 

init_ecdr Initialize_Encoders_History procedure in 
Fault_monitor_s.a causes fault 

init2 Initialize_2 procedure in Remote_sphere.a causes fault 

initl Initialized procedure in Remote_sphere.a causes fault 

init_eng Initial_Engagement_Conditions procedure in 
Remote_sphere.a causes fault 

go Go procedure in Remote_sphere.a causes fault 

Table 15: Check Error Fault Description Listing 
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Figure 17: Algorithm Error Fault Tree 
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Node Label Fault Description 

algr err Closed loop position algorithm generates bad values 

calc tol Calc_Within_Tolerance procedure causes fault 

calc err Calc_Errors procedure causes fault 

calc step Calc_Steps procedure causes fault 

step null Steps_Or_Null procedure causes fault 

move step Move_Steppers procedure causes fault 

spread en- Spread_Of_Errors_During_Settle_And_Hold_Times 
procedure causes fault 

Table 16: Algorithm Error Fault Description Listing 
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ecdr brk 

Figure 18: Encoder Line Break Error Fault Tree 
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Node Label Fault Description 

ecdr brk Encoder line break causes continued motion 

hw break Hardware causes encoder line to break 

calcerr Software generates erroneous data causing encoder line 
to break 

ecdr off Encoders_Off procedure in Digital_output_s.a causes 
fault 

unfreeze Unfreeze_Encoder_Readings procedure in 
Digital_output_s.a causes fault 

freeze Freeze_Encoder_Readings procedure in 
Digital_output_s.a causes fault 

brk ecdr Broken_Encoder_Line procedure in 
Fault_Monitor_s.a causes fault 

evaluate Evaluate procedure in Evaluate_s.a causes fault 

ecdr on Encoders_On procedure in Digital_output_s.a causes 
fault 

ecdr down Encoders_Down procedure in Digital_output_s.a 
causes fault 

ecdr up EncodersJUp procedure in Digital_output_s.a causes 
fault 

Table 17: Encoder Line Break Error Fault Description Listing 
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Figure 19: Encoder Line Tracking Error Fault Tree 
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Node Label Fault Description 

tr reg er Encoder line tracking not registered in software 

get cntr Get_Control_Words procedure in Digital_input_s.a causes fault 

ecdrup Encoders_Up procedure in Digital_output_s.a causes fault 

ecdr down Encoders_Down procedure in Digital_output_s.a causes fault 

ecdron Encoders_On procedure in Digital_output_s.a causes fault 

ecdr off Encoders_Off procedure in Digital_output_s.a causes fault 

unfreeze Unfreeze_Encoder_Readings procedure in Digital_output_s.a 
causes fault 

freeze Freeze_Encoder_Readings procedure in Digital_output_s.a 
causes fault 

get vals GetJValues procedure in Encoders_b- a causes fault 

evaluate Evaluate procedure in Evaluate_s.a causes fault 

check mal Check_For_Malfunction procedure in Fault_monitor_s.a causes 
fault 

hw reset HW_Reset procedure in Hw_reset.a causes fault 

move ecdr Move_Encoder_Line procedure in Remote_sphere.a causes fault 

set stat Set_State procedure in Remote_sphere.a causes fault 

stop mot Stop_Motion procedure in Remote_sphere.a causes fault 

stop line Stop_All_Lines procedure in Remote_sphere.a causes fault 

Table 18: Encoder Line Tracking Error Fault Description Listing 
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Figure 20: Evaluate Sub-Tree Level One 
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Node Label Fault Description 

evaluate Sequence of statements causes Fault 

539 Last statement causes Fault 

535 If statement causes Fault 

538 Previous statements causes Fault 

536 Last Statement did not mask Fault 

537 Sequence prior to last causes Fault 

507 Sequence of statements causes Fault 

506 Last statement causes Fault 

502 If statement causes Fault 

505 Previous statements causes Fault 

503 Last Statement did not mask Fault 

504 Sequence prior to last causes Fault 

475 Sequence of statements causes Fault 

474 Last statement causes Fault 

469 Procedure call causes Fault 

473 Previous statements causes Fault 

471 Last Statement did not mask Fault 

472 Sequence prior to last causes Fault 

455 Sequence of statements causes Fault 

454 Last statement causes Fault 

450 If statement causes Fault 

453 Previous statements causes Fault 

451 Last Statement did not mask Fault 

Table 19: Evaluate Sub-Tree Level One Fault Description Listing 
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Node Label Fault Description 

452 Sequence prior to last causes Fault 

422 Sequence of statements causes Fault 

421 Last statement causes Fault 

414 Assignment Statement causes Fault 

420 Previous statements causes Fault 

418 Last Statement did not mask Fault 

419 Sequence prior to last causes Fault 

409 Sequence of statements causes Fault 

408 Last statement causes Fault 

403 Procedure call causes Fault 

407 Previous statements causes Fault 

405 Last Statement did not mask Fault 

406 Sequence prior to last causes Fault 

390 Sequence of statements causes Fault 

389 Last statement causes Fault 

385 Procedure call causes Fault 

388 Previous statements causes Fault 

386 Last Statement did not mask Fault 

387 Sequence prior to last causes Fault 

377 Sequence of statements causes Fault 

376 Last statement causes Fault 

367 Assignment Statement causes Fault 

375 Previous statements causes Fault 

373 Last Statement did not mask Fault 

374 Sequence prior to last causes Fault 

Table 19: Evaluate Sub-Tree Level One Fault Description Listing 
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Node Label Fault Description 

359 Sequence of statements causes Fault 

358 Last statement causes Fault 

349 Assignment Statement causes Fault 

357 Previous statements causes Fault 

355 Last Statement did not mask Fault 

356 Sequence prior to last causes Fault 

339 Sequence of statements causes Fault 

338 Last statement causes Fault 

329 Assignment Statement causes Fault 

337 Previous statements causes Fault 

335 Last Statement did not mask Fault 

336 Sequence prior to last causes Fault 

319 Sequence of statements causes Fault 

318 Last statement causes Fault 

309 Assignment Statement causes Fault 

317 Previous statements causes Fault 

315 Last Statement did not mask Fault 

316 Sequence prior to last causes Fault 

301 Sequence of statements causes Fault 

300 Last statement causes Fault 

295 Procedure call causes Fault 

299 Previous statements causes Fault 

297 Last Statement did not mask Fault 

298 Sequence prior to last causes Fault 

280 Sequence of statements causes Fault 

Table 19: Evaluate Sub-Tree Level One Fault Description Listing 
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Node Label Fault Description 

279 Last statement causes Fault 

270 Assignment Statement causes Fault 

278 Previous statements causes Fault 

276 Last Statement did not mask Fault 

277 Sequence prior to last causes Fault 

264 Sequence of statements causes Fault 

Table 19: Evaluate Sub-Tree Level One Fault Description Listing 
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Figure 21: Evaluate Sub-Tree Level Two 
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Node Label Fault Description 

264 Sequence of statements causes Fault 

263 Last statement causes Fault 

259 Procedure call causes Fault 

262 Previous statements causes Fault 

260 Last Statement did not mask Fault 

261 Sequence prior to last causes Fault 

250 Sequence of statements causes Fault 

249 Last statement causes Fault 

244 Procedure call causes Fault 

248 Previous statements causes Fault 

246 Last Statement did not mask Fault 

247 Sequence prior to last causes Fault 

231 Sequence of statements causes Fault 

230 Last statement causes Fault 

225 Procedure call causes Fault 

229 Previous statements causes Fault 

227 Last Statement did not mask Fault 

228 Sequence prior to last causes Fault 

209 Sequence of statements causes Fault 

208 Last statement causes Fault 

203 Procedure call causes Fault 

207 Previous statements causes Fault 

205 Last Statement did not mask Fault 

Table 20: Evaluate Sub-Tree Level Two Fault Description Listing 
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Node Label Fault Description 

206 Sequence prior to last causes Fault 

187 Sequence of statements causes Fault 

186 Last statement causes Fault 

182 Procedure call causes Fault 

185 Previous statements causes Fault 

183 Last Statement did not mask Fault 

184 Sequence prior to last causes Fault 

174 Sequence of statements causes Fault 

173 Last statement causes Fault 

169 If statement causes Fault 

165 Evaluation of condition causes Fault 

168 Condition true and statements causes Fault 

166 If condition true 

167 Then statements causes Fault 

159 Sequence of statements causes Fault 

158 Last statement causes Fault 

154 If statement causes Fault 

157 Previous statements causes Fault 

155 Last Statement did not mask Fault 

156 Sequence prior to last causes Fault 

164 Sequence of statements causes Fault 

163 Last statement causes Fault 

86 If statement causes Fault 

162 Previous statements causes Fault 

172 Previous statements causes Fault 

Table 20: Evaluate Sub-Tree Level Two Fault Description Listing 
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Figure 22: Evaluate Sub-Tree Level Three 
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Node Label Fault Description 

86 If statement causes Fault 

82 Evaluation of condition causes Fault 

85 Condition true and statements causes Fault 

83 If condition true 

84 Then statements causes Fault 

54 Sequence of statements causes Fault 

53 Last statement causes Fault 

44 Assignment Statement causes Fault 

52 Previous statements causes Fault 

50 Last Statement did not mask Fault 

51 Sequence prior to last causes Fault 

59 Sequence of statements causes Fault 

58 Last statement causes Fault 

40 Procedure call causes Fault 

37 Procedure elaboration causes Fault 

38 Procedure body causes Fault 

36 Broken_Encoder_Line 

39 Procedure not found on table 

57 Previous statements causes Fault 

79 ELSE part causes Fault 

80 Action by other task on variable causes Fault 

Table 21: Evaluate Sub-Tree Level Three Fault Description Listing 
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Figure 23: Brk Ecdr Root Sub-Tree 
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Node Label Fault Description 

brk ecdr Sequence of statements causes Fault 

235 Last statement causes Fault 

223 Loop Statement causes Fault 

224 Loop never executed 

231 Loop condition evaluation causes Fault 

229 Nth Iteration causes Fault 

221 Sequence of statements causes Fault 

220 Last statement causes Fault 

216 If statement causes Fault 

212 Evaluation of condition causes Fault 

215 Condition true and statements causes Fault 

213 If condition true 

214 Then statements causes Fault 

204 Sequence of statements causes Fault 

203 Last statement causes Fault 

194 Assignment statement causes fault 

202 Previous statements causes Fault 

200 Last Statement did not mask Fault 

201 Sequence prior to last causes Fault 

184 Sequence of statements causes Fault 

183 Last statement causes Fault 

179 If statement causes fault 

182 Previous statements causes Fault 

Table 22: Brk Ecdr Root Sub-Tree Fault Description Listing 
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Node Label Fault Description 

180 Last Statement did not mask Fault 

181 Sequence prior to last causes Fault 

209 Sequence of statements causes Fault 

208 Last statement causes Fault 

46 Assignment Statement causes Fault 

207 Previous statements causes Fault 

210 Action by other task on variable causes Fault 

219 Previous statements causes Fault 

228 Condition true past n-1 

234 Previous statements causes Fault 

Table 22: Brk Ecdr Root Sub-Tree Fault Description Listing 
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Figure 24: Brk Ecdr Node 194 Sub-Tree 
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Node Label Fault Description 

194 Assignment Statement causes Fault 

197 Change in values causes Fault 

198 Exception causes Fault 

199 Operand Evaluation causes Fault 

188 Indexed Component causes Fault 

185 Encoders_3000ms_Ago 

187 Relation causes Fault 

186 Line_Number 

193 Relation causes Fault 

192 Indexed Component causes Fault 

189 Encoders_Current 

191 Relation causes Fault 

190 Line_Number 

195 Action by other task on variable causes Fault 

Table 23: Brk Ecdr Node 194 Sub-Tree Fault Description Listing 
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Figure 25: Brk Ecdr Node 179 Sub-Tree 
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Node Label Fault Description 

179 If statement causes Fault 

175 Evaluation of condition causes Fault 

178 Condition true and statements causes Fault 

176 If condition true 

177 Then statements causes Fault 

169 Sequence of statements causes Fault 

168 Last statement causes Fault 

167 Previous statements causes Fault 

165 Last Statement did not mask Fault 

166 Sequence prior to last causes Fault 

161 Sequence of statements causes Fault 

160 Last statement causes Fault 

155 Procedure call causes Fault 

159 Previous statements causes Fault 

157 Last Statement did not mask Fault 

158 Sequence prior to last causes Fault 

144 Sequence of statements causes Fault 

143 Last statement causes Fault 

139 If statement causes Fault 

142 Previous statements causes Fault 

140 Last Statement did not mask Fault 

141 Sequence prior to last causes Fault 

84 Sequence of statements causes Fault 

Table 24: Brk Ecdr Node 179 Sub-Tree Fault Description Listing 
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Node Label Fault Description 

83 Last statement causes Fault 

79 Procedure call causes Fault 

76 Procedure elaboration causes Fault 

77 Procedure body causes Fault 

75 Stop_Motion 

78 Procedure not found on table 

82 Previous statements causes Fault 

80 Last Statement did not mask Fault 

81 Sequence prior to last causes Fault 

174 Sequence of statements causes Fault 

173 Last statement causes Fault 

73 Procedure call causes Fault 

69 Procedure elaboration causes Fault 

70 Procedure body causes Fault 

71 Off 

72 Procedure not found on table 

74 Parameter evaluation causes Fault 

65 Relation causes Fault 

64 Line_Number 

67 Action by other task causes Fault 

68 Line_Number 

172 Previous statements causes Fault 

Table 24: Brk Ecdr Node 179 Sub-Tree Fault Description Listing 
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Figure 26: Brk Ecdr Node 46 Sub-Tree 



Node Label Fault Description 

46 Assignment Statement causes Fault 

49 Change in values causes Fault 

50 Exception causes Fault 

51 Operand Evaluation causes Fault 

23 Indexed Component causes Fault 

20 Encoder_Speed 

22 Relation causes Fault 

21 Line_Number 

45 Relation causes Fault 

44 Indexed Component causes Fault 

25 Counts_Unsigned 

43 Relation causes Fault 

42 Division or Multiplication causes Fault 

39 Indexed Component causes Fault 

27 Real 

38 Relation causes Fault 

37 Addition or Subtraction causes Fault 

31 Indexed Component causes Fault 

28 Encoders_3000ms_Ago 

30 Relation causes Fault 

29 Line_Number 

32 Subtraction causes Fault 

36 Indexed Component causes Fault 

Table 25: Brk Ecdr Node 46 Sub-Tree Fault Description Listing 
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Node Label Fault Description 

33 Encoders_Current 

35 Relation causes Fault 

34 Line_Number 

41 Enc_Line_Error_Time 

40 Division By Zero causes Fault 

47 Action by other task on variable causes Fault 

Table 25: Brk Ecdr Node 46 Sub-Tree Fault Description Listing 
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